Motivations: What perfectoid theory achieved:

Cohomology (Hodge...) X/Zp smooth projective, T = Spec Zp. X is a family over T with 2 variables. How does Hief (XT, IFp) change?

Example: X elliptic cure,

Hier (XF, Fp) = Hising (XC, Fp) = Fp but Hig (Xp, Fp) = {0 super sing.

Theorem: [Bratt-Mossaw (?) - Scholze] Het (Xh, Fp) (> H*(X, IX,T).

Gr i<dimX.

Direct summand conj.

A ci>B, B finite A-module > 1 splits as an A-module hom. regular In char. O it is automatic, in charp ~ Kunz's thm. Theorem [André] This holds.

Weight monodromy conj. (mixed char version of weil conj)

Weil conj. : eigenvalues of Frobenius on $H^i(X_{\overline{R}_q}, \mathbb{Q}_q)$ are alg. numbers of absolute value $q^{i/2}$

Theorem: [Scholze] Weight monodromy conjecture is true

Proposition: (A,A^+) complete affinoid, $a \in A$ is invertible $\iff |a| \neq 0 \quad \forall \mid \cdot \mid \in Spa(A,A^+)$.

We prove a stronger version.

Theorem: (A,A+) as above, TCA and J=T.A, TFAE

2. VIOLESpa(A,A+) StET: It1+0

() for T finite then { R(T/t) | t∈T { open cover}

Proof: 1. \Rightarrow 2. $1 = \sum_{\text{finite}} a_i t_i$ $a_i \in A$ $t_i \in T$ $1 = |1| = |\sum_{\text{aitil}} a_i t_i| \leq \max_{\text{aitil}} |a_i| + |b_i| = |b_i|$ w | $t_i \mid t \mid 0$.

2. \Rightarrow 1. Suppose $1 \neq A \Rightarrow \exists m$ maximal ideal such that

Lemma: If A is a complete f-adic ring

Proof: (i) A^{\times} is open (ii) $m \subseteq A$ mex. ideal closed. Proof: (i) $\frac{1}{1-a} = \sum_{i=0}^{\infty} a^i$ if $a \in A^{\circ \circ} \Rightarrow 1 + A^{\circ \circ} \subseteq_{open} A^{\times}$

Thus for $a \in A^{\times}$ $a(1+A^{\circ \circ}) \subseteq_{open} A^{\times}$ & $a \in a(1+A^{\circ \circ})$ (ii) $m \subseteq m^{\circ} \subseteq A$ by (i) $m \cap A^{\times} = \emptyset \Rightarrow m = m$ work 17: (A,A^{+}) offinoid, $J \subseteq A$ ideal then $Spa(A/J, (A/J)^{+})$ in Chosume $Spa(A,A^{+}) \cap Supp^{-1}(J)$

In particular is (A/1, (A/1)+) is affinoid?

Enough to show that 31.1 ESpa(A,At) St m C Suppl.1 Spa(A/m, (A/m)+) + Ø. We know that 0 EA/m is closed A/m Hausdorff.

Proposition: (A, At) affinoid, TFAE

(i) $Spa(A,At)=\emptyset$ (ii) $Cont(A)=\emptyset$ (iii) for=AProof: (i) $Cont(A)=\emptyset$ (ii) $Cont(A)=\emptyset$ (iii) for=AProof: (i) $Cont(A)=\emptyset$ (iii) $Cont(A)=\emptyset$ (iii) Cont(A)(iii) $Cont(A)=\emptyset$.

(iii) $Cont(A)=\emptyset$.

(iv) $Cont(A)=\emptyset$

Lemma. $B \subseteq A$ open subring of a topological ring. Then the map induced by restriction Cont(A)an \longrightarrow Cont(B)an is surjective.

This conswers ②. We are left to show that $I \cdot I$ and be deformed to a continuous valuation keeping it analytic.

Problem, if $III \cap c\Gamma = \emptyset$. Define $c\Gamma(I) = \begin{cases} c\Gamma \\ \{8 \in \Gamma \mid \exists n > 0 : \S^n \leqslant 8 \leqslant 8^{-n}\} \end{cases}$ if $III \cap c\Gamma = \emptyset$ where $S = \max\{III\}$ Why is $I \cdot I \subset \Gamma(I)$ continuous if $III \cap c\Gamma = \emptyset$. Enough to show that $\{a \in A_0 \mid |a| < \S^n \}$ is open for every Γ . This is because S generates $c\Gamma(I)$ as a convex subgroup of Γ . But $I \cap C \cap C \cap C \cap C \cap C \cap C \cap C$.